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1 Polytopes and Permutahedra

1.1 Polytopes

Definition 1.1. A polytope P ⊆ Rd is either of the following two equivalent things:

1. P = conv(X), |X| <∞, X ⊆ Rd.

2. P =
⋂
Hi such that P is compact, where the Hi are half spaces.

Definition 1.2. The dimension of P is dim(P ) = dimR 〈P 〉, the affine subspace of Rn

spanned by P .

Definition 1.3. A face F ⊆ P is a subset of P such that there exists an affine subspace
W ⊆ Rd such that

1. F = P ∩W ,

2. there exists a half-space H such that P ⊆ H, W ⊆ ∂H, and P ∩ ∂H = F .1

Example 1.1. Let C3 be the cube in R3. Then C3 = conv({(±1,±1,±1)}). On the other
hand, C3 =

⋂3
i=1{x : xi ≤ 1} ∩

⋂3
i=1{x : xi ≥ −1}. The faces are C3 ∩ {x : xi = ±1}.

Definition 1.4. An edge is a 1-dimensional face. A vertex is a 0-dimensional face. A
facet is a (d− 1)-dimensional face.

Definition 1.5. The graph Γ(P ) of a polytope is a graph Γ = (V,E), where V (P ) is the
set of vertices of P and E(P ) is the set of edges of P .

Definition 1.6. The face lattice α(P ) is the partially ordered set of faces of P , ordered
by inclusion.

1This second condition implies the first, so you should really think of it as a clarification of the previous
condition.
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This is a lattice because the meet of F and F ′ is F ∩ F ′, and the join of F and F ′ is
〈F ∪ F ′〉 ∩ P .

Example 1.2. Let P be a square in R2. Then Γ(P ) is the graph of the boundary of the
square, and α(P ) is

P

14 12 23 34

1 2 3 4

{∅}

Here is a theorem we will prove later.

Theorem 1.1 (Blind-Mani). If P ⊆ Rd is simple, then Γ, the graph of P determines the
face lattice of P .

1.2 Permutahedra

Definition 1.7. This permutahedron is P = conv({(σ(1), . . . , σ(n)) : σ ∈ Sn}).

Observe that dim(P ) = n− 1.

Example 1.3. For n = 2, the permutahedron is

(1,2) (2,1)

For n = 3, we have

(3,2,1) (3,1,2)

(2,3,1)

(1,3,2) (1,2,3)

(2,1,3)

Proposition 1.1. Γ(Pn) ∼= Cay(Sn, Rn), where Rn is the set of transpositions (i j) with
1 ≤ i, j ≤ n with a left action.
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Observe that Pn is simple. In particular, we can figure out the F-vector. Consider a
linear functional ϕ : Rn → R nonconstant on edges where

ϕ(x1, . . . , xn) = x1 + εx2 + ε2x3 + · · ·+ εn−1xn.

Then ind(σ) is the number of i ∈ {1, . . . , n − 1} such that ϕ((i i + 1)σ) > ϕ(σ). This is

the number of i such that σ−1(i) < σ−1(i+ 1). So gk = h
(ϕ)
k is the number of σ ∈ SN such

that σ−1 has k ascents.
Let A(n,K) be the number of σ ∈ Sn with exactly k ascents.2 We can prove the

following proposition.

Proposition 1.2.

A(n, k) = (n−K)A(n− 1, k − 1) + (k + 1)A(n− 1, k)

Example 1.4. This is called the Birkhoff polytope. It is the set of matrices of non-
negative entries such that the sum of the rows and columns are all 1. Formally, this is
Bn =

⋂n
i=1

⋂n
j=1{x : xi,j ≥ 0} ∩

⋂n
j=1{x :

∑n
i=1 xi,j = 1} ∩

⋂n
i=1{x :

∑n
j=1 xi,j = 1}.

Theorem 1.2. V (Bn) = {Mat(σ) : σ ∈ Sn}. E(Bn) = {(σ,wσ) : w ∈ Sn is a cycle}}

Corollary 1.1. degΓ(v) is the number of cycles in Sn, and dim(Bn) = (n− 1)2.

Question: Is fi(B) computable in polynomial time?

Theorem 1.3 (Pak). Let Qn be the set of such matrices but with dimension n× (n+ 1).
Then fi(Qn) can be computed in polynomial time.

2The bivariate generating function for A(n, k) has a nice form.
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