Math 206A Lecture 11 Notes

Daniel Raban

October 22, 2018

1 Polytopes and Permutahedra

1.1 Polytopes

Definition 1.1. A polytope $P \subseteq \mathbb{R}^d$ is either of the following two equivalent things:

- 1. $P = \operatorname{conv}(X), |X| < \infty, X \subseteq \mathbb{R}^d.$
- 2. $P = \bigcap H_i$ such that P is compact, where the H_i are half spaces.

Definition 1.2. The **dimension** of *P* is $\dim(P) = \dim_{\mathbb{R}} \langle P \rangle$, the affine subspace of \mathbb{R}^n spanned by *P*.

Definition 1.3. A face $F \subseteq P$ is a subset of P such that there exists an affine subspace $W \subseteq \mathbb{R}^d$ such that

1.
$$F = P \cap W$$
,

2. there exists a half-space H such that $P \subseteq H$, $W \subseteq \partial H$, and $P \cap \partial H = F$.¹

Example 1.1. Let C_3 be the cube in \mathbb{R}^3 . Then $C_3 = \text{conv}(\{(\pm 1, \pm 1, \pm 1)\})$. On the other hand, $C_3 = \bigcap_{i=1}^3 \{x : x_i \le 1\} \cap \bigcap_{i=1}^3 \{x : x_i \ge -1\}$. The faces are $C_3 \cap \{x : x_i = \pm 1\}$.

Definition 1.4. An edge is a 1-dimensional face. A vertex is a 0-dimensional face. A facet is a (d-1)-dimensional face.

Definition 1.5. The graph $\Gamma(P)$ of a polytope is a graph $\Gamma = (V, E)$, where V(P) is the set of vertices of P and E(P) is the set of edges of P.

Definition 1.6. The face lattice $\alpha(P)$ is the partially ordered set of faces of P, ordered by inclusion.

¹This second condition implies the first, so you should really think of it as a clarification of the previous condition.

This is a lattice because the meet of F and F' is $F \cap F'$, and the join of F and F' is $\langle F \cup F' \rangle \cap P$.

Example 1.2. Let P be a square in \mathbb{R}^2 . Then $\Gamma(P)$ is the graph of the boundary of the square, and $\alpha(P)$ is

Here is a theorem we will prove later.

Theorem 1.1 (Blind-Mani). If $P \subseteq \mathbb{R}^d$ is simple, then Γ , the graph of P determines the face lattice of P.

1.2 Permutahedra

Definition 1.7. This **permutahedron** is $P = \operatorname{conv}(\{(\sigma(1), \ldots, \sigma(n)) : \sigma \in S_n\})$.

Observe that $\dim(P) = n - 1$.

Example 1.3. For n = 2, the permutahedron is

$$\begin{array}{ccc} (1,2) & (2,1) \\ \bigcirc & \bigcirc & \bigcirc \end{array}$$

For n = 3, we have

Proposition 1.1. $\Gamma(P_n) \cong \operatorname{Cay}(S_n, R_n)$, where R_n is the set of transpositions $(i \ j)$ with $1 \le i, j \le n$ with a left action.

Observe that P_n is simple. In particular, we can figure out the \mathcal{F} -vector. Consider a linear functional $\varphi : \mathbb{R}^n \to \mathbb{R}$ nonconstant on edges where

$$\varphi(x_1,\ldots,x_n) = x_1 + \varepsilon x_2 + \varepsilon^2 x_3 + \cdots + \varepsilon^{n-1} x_n$$

Then $\operatorname{ind}(\sigma)$ is the number of $i \in \{1, \ldots, n-1\}$ such that $\varphi((i \ i+1)\sigma) > \varphi(\sigma)$. This is the number of i such that $\sigma^{-1}(i) < \sigma^{-1}(i+1)$. So $g_k = h_k^{(\varphi)}$ is the number of $\sigma \in S_N$ such that σ^{-1} has k ascents.

Let A(n, K) be the number of $\sigma \in S_n$ with exactly k ascents.² We can prove the following proposition.

Proposition 1.2.

$$A(n,k) = (n-K)A(n-1,k-1) + (k+1)A(n-1,k)$$

Example 1.4. This is called the **Birkhoff polytope**. It is the set of matrices of nonnegative entries such that the sum of the rows and columns are all 1. Formally, this is $B_n = \bigcap_{i=1}^n \bigcap_{j=1}^n \{x : x_{i,j} \ge 0\} \cap \bigcap_{j=1}^n \{x : \sum_{i=1}^n x_{i,j} = 1\} \cap \bigcap_{i=1}^n \{x : \sum_{j=1}^n x_{i,j} = 1\}.$

Theorem 1.2. $V(B_n) = {\operatorname{Mat}(\sigma) : \sigma \in S_n}$. $E(B_n) = {(\sigma, w\sigma) : w \in S_n \text{ is a cycle}}$

Corollary 1.1. deg_{Γ}(v) is the number of cycles in S_n , and dim $(B_n) = (n-1)^2$.

Question: Is $f_i(B)$ computable in polynomial time?

Theorem 1.3 (Pak). Let Q_n be the set of such matrices but with dimension $n \times (n+1)$. Then $f_i(Q_n)$ can be computed in polynomial time.

²The bivariate generating function for A(n, k) has a nice form.