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1 Polytopes and Permutahedra

1.1 Polytopes

Definition 1.1. A polytope P C R? is either of the following two equivalent things:
1. P=conv(X), |X| < oo, X C R
2. P =) H,; such that P is compact, where the H; are half spaces.

Definition 1.2. The dimension of P is dim(P) = dimg (P), the affine subspace of R"
spanned by P.

Definition 1.3. A face F C P is a subset of P such that there exists an affine subspace
W C R< such that

1. F=PnNnW,
2. there exists a half-space H such that P C H, W C 9H, and PNOH = F.!

Example 1.1. Let C3 be the cube in R3. Then C3 = conv({(%1,41,41)}). On the other
hand, C3 = o_{z : 2; <1} N {x : 2; > —1}. The faces are C3 N {z : z; = +1}.

Definition 1.4. An edge is a 1-dimensional face. A vertex is a 0-dimensional face. A
facet is a (d — 1)-dimensional face.

Definition 1.5. The graph I'(P) of a polytope is a graph I' = (V, E'), where V(P) is the
set of vertices of P and E(P) is the set of edges of P.

Definition 1.6. The face lattice a(P) is the partially ordered set of faces of P, ordered
by inclusion.

!This second condition implies the first, so you should really think of it as a clarification of the previous
condition.



This is a lattice because the meet of F and F’ is F'N F’, and the join of F and F’ is
(FUF')N P.

Example 1.2. Let P be a square in R?. Then I'(P) is the graph of the boundary of the
square, and «(P) is

Here is a theorem we will prove later.

Theorem 1.1 (Blind-Mani). If P C R? is simple, then T, the graph of P determines the
face lattice of P.

1.2 Permutahedra
Definition 1.7. This permutahedron is P = conv({(c(1),...,0(n)) : 0 € Sp}).
Observe that dim(P) =n — 1.

Example 1.3. For n = 2, the permutahedron is

(12) (21
o——=0
For n = 3, we have
(1,3,2) (1,2,3)

Proposition 1.1. I'(P,) = Cay(S,, R,), where R, is the set of transpositions (i j) with
1 <i,5 <n with a left action.



Observe that P, is simple. In particular, we can figure out the F-vector. Consider a
linear functional ¢ : R™ — R nonconstant on edges where

80(1'1, v 7xn) =1 +€x9 +€2$3 + .- —|—5n_1xn'

Then ind(o) is the number of ¢ € {1,...,n — 1} such that ¢((i i + 1)o) > ¢(o). This is
the number of i such that o=1(i) < o= (i +1). So g = h,(f) is the number of o € Sy such
that 0! has k ascents.

Let A(n, K) be the number of o € S, with exactly k ascents.? We can prove the
following proposition.

Proposition 1.2.
Anyk)=(n— K)Aln—1,k—-1)+ (k+1)A(n — 1,k)

Example 1.4. This is called the Birkhoff polytope. It is the set of matrices of non-
negative entries such that the sum of the rows and columns are all 1. Formally, this is

By =i Ntz @iy >0y N {o: 2 @y = 1NN {e: 200 @y = 1)

Theorem 1.2. V(B,) = {Mat(c) : 0 € S,,}. E(By) = {(o,wo) : w € S, is a cycle}}

Corollary 1.1. degp(v) is the number of cycles in Sy, and dim(B,,) = (n — 1)2.
Question: Is f;(B) computable in polynomial time?

Theorem 1.3 (Pak). Let @Q,, be the set of such matrices but with dimension n x (n+ 1).
Then f;(Qn) can be computed in polynomial time.

2The bivariate generating function for A(n, k) has a nice form.
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